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Abstract
In recent years the use of convolutional layers to encode an inductive bias (trans-
lational equivariance) in neural networks has proven to be a very fruitful idea.
The successes of this approach have motivated a line of research into incor-
porating other symmetries into deep learning methods, in the form of group
equivariant convolutional neural networks. Much of this work has been focused
on roto-translational symmetry of Rd, but other examples are the scaling sym-
metry of Rd and rotational symmetry of the sphere. In this work, we demonstrate
that group equivariant convolutional operations can naturally be incorporated
into learned reconstruction methods for inverse problems that are motivated
by the variational regularisation approach. Indeed, if the regularisation func-
tional is invariant under a group symmetry, the corresponding proximal operator
will satisfy an equivariance property with respect to the same group symmetry.
As a result of this observation, we design learned iterative methods in which
the proximal operators are modelled as group equivariant convolutional neural
networks. We use roto-translationally equivariant operations in the proposed
methodology and apply it to the problems of low-dose computerised tomog-
raphy reconstruction and subsampled magnetic resonance imaging reconstruc-
tion. The proposed methodology is demonstrated to improve the reconstruction
quality of a learned reconstruction method with a little extra computational cost
at training time but without any extra cost at test time.
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1. Introduction

Deep learning has recently had a large impact on a wide variety of fields; research laboratories
have published state-of-the-art results applying deep learning to sundry tasks such as play-
ing Go [1], predicting protein structures [2] and generating natural language [3]. In particular,
deep learning methods have also been developed to solve inverse problems, with some exam-
ples being [4–7]. In this work we investigate the use of equivariant neural networks for solving
inverse imaging problems, i.e. inverse problems where the solution is an image. Convolutional
neural networks (CNNs) [8] are a standard tool in deep learning methods for images. By learn-
ing convolutional filters, CNNs naturally encode translational symmetries of images: if τ h is
a translation by h ∈ Rd, and k, f are functions on Rd , we formally have the following relation
(translational equivariance)

τh[k ∗ f ] = k ∗ [τh f ]. (1)

This allows learned feature detectors to detect features regardless of their position (though not
their orientation or scale) in an image. In many cases it may be desirable for these learned fea-
ture detectors to also work when images are transformed under other group transformations,
i.e. one may ask that a property such as equation (1) holds for a more general group transfor-
mation than the group of translations {τ h|h ∈ Rd}. If natural symmetries of the problem are
not built into the machine learning method and are not present in the training data, in the worst
case, it can result in catastrophic failure as illustrated in figure 1.

To some extent, this problem is circumvented by augmenting the training data through suit-
able transformations, but it has been shown in classification and segmentation tasks that it is
still beneficial to incorporate known symmetries directly into the architecture used, especially
if the amount of training data is small [9–11]. Furthermore, training on augmented data is not
enough to guarantee that the final model satisfies the desired symmetries. There has recently
been a considerable amount of work in this direction, in the form of group equivariant CNNs.
Most of the focus has been on roto-translational symmetries of images [9, 11–13], though there
is also some work on incorporating scaling symmetries [14, 15] and even on equivariance to
arbitrary Lie group symmetries [16].

As mentioned before, we will concern ourselves with solving inverse imaging problems:
given measurements y that are related to an underlying ground truth image u through a model

y = N(A(u)), (2)

with A the so-called forward operator and N a noise-generating process, the goal is to estimate
the image u from the measurements y as well as possible. Typical examples of inverse imaging
problems include the problem of recovering an image from its line integrals as in computerised
tomography (CT) [17], or recovering an image from subsampled Fourier measurements as
in magnetic resonance imaging (MRI) [18, 19]. The solution of an inverse problem is often
complicated by the presence of ill-posedness: a problem is said to be well-posed in the sense
of Hadamard [20] if it satisfies a set of three conditions (existence of a solution, its uniqueness,
and its continuous dependence on the measurements), and ill-posed if any of these conditions
fail.
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Figure 1. Roto-translationally (‘equivariant’) and just translationally (‘ordinary’) equiv-
ariant filters are trained to denoise on a single pair of ground truth and noisy images
(‘clean’ and ‘noisy’ in the top row), giving perfect denoising results on the training
example. In the bottom row, we see the result of testing the learned filters on a rotated
version of the training image; the ordinary filter completely fails at recovering the ground
truth, whereas the equivariant filter performs as well as it did on the training image.

It is a natural idea to try to apply equivariant neural networks to solve inverse imaging
problems: there is useful knowledge about the relationship between a ground truth image and its
measurements in the form of A and the symmetries in both the measurement and image domain
(the range and domain of A respectively). Furthermore, training data tends to be considerably
less abundant in medical and scientific imaging than in the computer vision and image analysis
tasks that are typical of the deep learning revolution, such as ImageNet classification [21].
This suggests that the lower sample complexity of equivariant neural networks (as compared to
ordinary CNNs) may be harnessed in this setting with scarce data to learn better reconstruction
methods. Finally, end users of the methods, e.g. medical practitioners, are often skeptical of
‘black-box’ methods and guarantees on the behaviour of the method, such as equivariance of
the method to certain natural image transformations, may alleviate some of the concerns that
they have.

We investigate the use of equivariant neural networks within the framework of learned iter-
ative reconstruction methods [5, 22], which constitute some of the most prototypical deep
learning solutions to inverse problems. The designs of these methods are motivated by classi-
cal variational regularisation approaches [23, 24], which propose to overcome the ill-posedness
of an inverse problem by estimating its solution as

û = arg min
u

d(A(u), y)+ J(u), (3)

with d a measure of discrepancy motivated by our knowledge of the noise-generating processN
and J is a regularisation functional incorporating prior knowledge of the true solution. Learned
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iterative reconstruction methods, also known as unrolled iterative methods, are designed by
starting from a problem such as problem (3), choosing an iterative optimisation method to
solve it, truncating that method to a finite number of iterations, and finally replacing parts of
it (e.g. the proximal operators) by neural networks. We will show that these neural networks
can naturally be chosen to be equivariant neural networks, and that doing so gives improved
performance over choosing them to be ordinary CNNs. More precisely, our contributions in
this work are as follows:

1.1. Our contributions

We show that invariance of a functional to a group symmetry implies that its proximal opera-
tor satisfies an equivariance property with respect to that group. This insight can be combined
with the unrolled iterative method approach: it makes sense for a regularisation functional to
be invariant to roto-translations if there is no prior knowledge on the orientation and posi-
tion of structures in the images, in which case the corresponding proximal operators are
roto-translationally equivariant.

Motivated by these observations, we build learned iterative methods using roto-
translationally equivariant building blocks. We show in a supervised learning setting that these
methods can outperform comparable methods that only use ordinary convolutions as build-
ing blocks, when applied to a low-dose CT reconstruction problem and a subsampled MRI
reconstruction problem. This outperformance is manifested in two main ways: the equivariant
method is better able to take advantage of small training sets than the ordinary one, and its per-
formance is more robust to transformations that leave images in orientations not seen during
training.

2. Notation and background on groups and representations

In this section, we give an overview of the main concepts regarding groups and representa-
tions that are required to follow the main text. By a group G, we mean a set equipped with an
associative binary operation · : G × G → G (usually the dot is omitted in writing), furthermore
containing a neutral element e, such that e · g = g · e = g for all g ∈ G and a unique inverse
g−1 for each group element g, such that g · g−1 = g−1 · g = e. Given groups G and H, we say
that a map φ : G → H is a group homomorphism if it respects the group structures:

φ(g1g2) = φ(g1)φ(g2) for any g1, g2 ∈ G.

Groups can be naturally used to describe symmetries of mathematical objects through the con-
cept of group actions. Given a group G and set X, we say that G acts on X if there is a function
T : G × X → X (the application of which we stylise as Tg[x] for g ∈ G, x ∈ X) that obeys the
group structure in the sense that

Tg1 ◦ Tg2 = Tg1g2 for any g1, g2 ∈ G (4)

and Te = id. That is, the group action can be thought of as a group homomorphism from G to
the permutation group of X. If there is no ambiguity, the group action may just be written as
Tg[x] = g · x = gx. An important type of group actions is given by the group representations.
If V is a vector space, we will denote by GL(V) its general linear group, the group of invertible
linear maps V → V , with the group operation given by composition. A representation ρ : G →
GL(V) of a group G which acts on V is a group homomorphism, and so corresponds to a
linear group action T of G on V : ρ(g)x = Tg[x] for x ∈ V and g ∈ G. Given a vector space
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V , any group G has a representation on V given by ρ(g) = I, which is the so-called trivial
representation. If V is additionally a Hilbert space, we will call ρ a unitary representation if
ρ(g) is a unitary operator for each g ∈ G, i.e. ‖ρ(g)x‖ = ‖x‖ for all x ∈ V . Given a finite group
G = {g1, . . . , gn}, we can define the so-called regular representation ρ of G on Rn by

ρ(gi)e j = ek,

where {e1, . . . , en} is a basis of Rn and k is such that gig j = gk. With this representation,
each ρ(g) is a permutation matrix, so ρ is a unitary representation if the basis {e1, . . . , en}
is orthonormal.

In this work, the groups that we will consider take the form of a group of isometries on Rd .
These groups are represented by a semi-direct product G = Rd

� H, where H is a subgroup of
the orthogonal group O(d) of rotations and reflections:

O(d) = {R ∈ GL(Rd)|RT = R−1}.

An important subgroup of O(d) is the special orthogonal group SO(d) = {A ∈ O(d)| det(A) =
1}, which represents the set of pure rotations in O(d). Each element of the semi-direct product
G can be identified with a unique pair (t, R) of t ∈ Rd, the translation component, and R ∈ H,
the rotation (and potentially reflection). The semi-direct product can naturally be encoded as a
matrix using homogeneous coordinates

(t, R) ↔
(

R t
0 1

)
,

so that the group product is given by a matrix product. G naturally acts on a point x ∈ Rd

through T (t,R)[x] = (t, R)x = Rx + t.
In the experiments that we consider later in this work, we will consider the case d = 2. In

this case SO(2) has a simple description:

SO(2) =

{(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
|θ ∈ [0, 2π)

}
.

We will identify the groups Zm of integers modulo m with the subgroup of SO(2) given by

Zm =

{(
cos(2πk/m)− sin(2πk/m)

sin(2πk/m) cos(2πk/m)

)
|k ∈ Z

}
.

Given vector spaces V1, V2, we will denote by Hom(V1, V2) the vector space of linear operators
A : V1 → V2. We will refer to a number of function spaces: L2(Rd , Rc) denotes the Hilbert space
of square integrable functions f : Rd → Rc (where Rc carries the Euclidean norm), identified as
usual up to equality almost everywhere, and C∞

c (Rd , Rc) denotes the vector space of infinitely
smooth functions f : Rd → Rc that have compact support.
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3. Learnable equivariant maps

The concept of equivariance is well-suited to describing the group symmetries that a function
might obey:

Definition 1. Given a general group G, a function Φ : X →Y and group actions TX , TY of
G on X and Y , Φ will be called equivariant if it satisfies

Φ(TX
g [ f ]) = TY

g [Φ( f )] (5)

for all f ∈ X and g ∈ G.

Following the definition of equivariance, we see that equivariant functions have the con-
venient property that composing them results in an equivariant function, as long as the group
actions on the inputs and outputs match in the appropriate way:

Lemma 1. Suppose that G is a group that acts on sets X ,Y and Z through TX , TY and TZ .
If Φ : X →Y and Ψ : Y →Z are equivariant, then so is Ψ ◦ Φ : X →Z .

Based on this property it is clear that the standard approach to building neural networks
(compose linear and nonlinear functions with learnable components in an alternating manner)
can be used to build equivariant neural networks as long as linear and nonlinear functions with
the desired equivariance can be constructed.

Example 1. Suppose that X = L2(Rd, RcX ) and Y = L2(Rd, RcY ), with the group G = Rd

acting on X by TX
h [ f ](x) = f (x − h), and in a similar way on Y by TY . Ordinary CNNs

[8], with convolutional linear layers and pointwise nonlinear functions, are equivariant in this
setting.

In this work, we will consider the group G = Rd
� H for some subgroup H of O(d) (see

section 2 for some background), acting on vector-valued functions. To be more specific, we
will let X = L2(Rd, RdX ) be the Hilbert space of square-integrable RdX -valued functions and
assume that RdX carries a representation πX : H → GL(RdX ). Similarly, we will define Y =
L2(Rd, RdY ) and assume that πY : H → GL(RdY ) is a representation of H. We define the group
actions TX and TY to be the induced representations, ρX and ρY , of πX and πY on X and Y
respectively. In the setting that we are considering, these representations take a particularly
simple form. As mentioned in section 2, since we assume that G takes the semi-direct product
form Rd

� H, each group element g ∈ G can be uniquely thought of as a pair g = (t, R) for
some t ∈ Rd and R ∈ H. With this in mind, the representations ρX and ρY can be written as
follows for any f ∈ Z , x ∈ Rd and t ∈ Rd , R ∈ H:

ρZ ((t, R))[ f ](x) = πZ (R)︸ ︷︷ ︸
(a)

f ((t, R)−1x)︸ ︷︷ ︸
(b)

for Z = X , orZ = Y. (6)

These representations have a natural interpretation: to apply a group element (t, R) to a vector-
valued function, we must move the vectors, as in part (b) of equation (6), and transform each
vector accordingly, as in part (a) of equation (6).

3.1. Equivariant linear operators

It is well-established that equivariant linear operators are strongly connected to the concept of
convolutions. Indeed, in a relatively general setting it has been shown that an integral operator is
equivariant if and only if it is given by a convolution with an appropriately constrained kernel
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[25]. In the setting that we are considering, the more specific result in proposition 1 can be
derived, as done in [11, 26] for the case d = 2 and [27] for the case d = 3.

Proposition 1. Suppose that Φ : X →Y is an operator given by integration against a
continuous kernel K : Rd × Rd → Hom(RdX , RdY ),

Φ( f )(x) =
∫
Rd

K(x, y) f (y) dy.

Then the operator Φ is equivariant if and only if it is in fact given by a convolution satisfying
an additional constraint: there is a continuous k : Rd → Hom(RdX , RdY )

Φ( f )(x) =
∫
Rd

k(x − y) f (y)dy,

where k satisfies the additional condition

k(Rx) = πY (R)k(x)πX (R−1) for x ∈ Rd , R ∈ H.

The derivation of this result proceeds by writing out the definitions of equivariance and
using the invariances of the Lebesgue measure. The equivariance of Φ implies that we must
the following chain of equalities for any x ∈ Rd , f ∈ X , t ∈ Rd, R ∈ H and g = (t, R) ∈ G:∫

Rd

πY (R)K(g−1x, y) f (y) dy
(a)
=πY (R)

∫
Rd

K(g−1x, y) f (x) dy

= ρY (g)[Φ( f )](x)

(b)
= Φ(ρX (g)[ f ])(x)

=

∫
Rd

K(x, y)ρXg[ f ](y) dy

=

∫
Rd

K(x, y)πX (h) f (g−1y) dy

(c)
=

∫
Rd

K(x, gy)πX (h) f (y) dy.

Here the tags above the equality signs correspond to the following justifications:

(a) Since πY is a group representation, πY (R) is a linear map and commutes with the integral,
(b) Φ is assumed to be equivariant,
(c) We make the substitution y ← gy and note that the Lebesgue measure is invariant to G.

Taking the left-hand side and right-hand side together, we find that∫
Rd

(
πY (R)K(g−1x, y) − K(x, gy)πX (R)

)
f (y)dy = 0,
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and since this must hold for any f ∈ X = L2(Rd, RdX ), we conclude by testing on sequences
converging to Dirac delta functions that

πY (R)K(g−1x, y) = K(x, gy)πX (R). (7)

Specialising by setting R equal to the identity element, we see that

K(x − t, y) = K((t, I)−1x, y) = K(x, (t, I)y) = K(x, y + t),

or upon substituting x ← x + t, K(x, y) = K(x + t, y + t). Choosing t to be the translation that
takes y to 0, we find that

K(x, y) = K(x − y, 0) =: k(x − y)

defines a convolution kernel k : Rd → Hom(RdX , RdY ). Now specialising equation (7) by let-
ting R ∈ H and x ∈ Rd be arbitrary and t, y = 0, we obtain the condition πY (R)k(R−1x) =
k(x)πX (R), or upon substituting x ← Rx and rearranging,

k(Rx) = πY (R)k(x)πX (R−1). (8)

Conversely, the above reasoning can be reversed to show that the condition in equation (8) (for
all x ∈ Rd, R ∈ H) is sufficient to guarantee equivariance of Φ.

The condition in equation (8) is a linear constraint that is fully specified before training.
Hence, if a basis is computed for the convolution kernels satisfying equation (8), a general
equivariant linear operator can be learned by learning its parameters in that basis. Since the
choices of H that we consider are all compact groups, any representation of H can be decom-
posed as a direct sum of irreducible representations of H (theorem 5.2 in [28]). As a result
of this, we can give the following procedure to compute a basis for the convolution kernels
satisfying the equivariance condition in equation (8) as soon as πX and πY are specified:

• Decompose πX and πY as direct sum of irreducible representations; πX =

QX diag(π1
X , . . . , πkX

X )Q−1
X , πY = QY diag(π1

Y , . . . , πkY
Y )Q−1

Y (here diag constructs a
block diagonal matrix with the diagonal elements given by the arguments supplied to
diag).

• For each i, j with 1 � i � kX , 1 � j � kY find a basis for the convolution kernels ki, j

satisfying the equivariance condition

ki, j(Rx) = π j
Y (R)ki, j(x)π j

X (R−1)

with the irreducible representations π j
Y and πi

X .
• Given expansions of the ki, j, compute the overall equivariant convolution kernel k by

k = QY · (ki, j)1�i�kX ,1� j�kY · Q−1
X .

This procedure has been described in more detail in [11] and implemented in the cor-
responding software package for the groups G = R2

� H, where H can be any subgroup
of O(2).

Since the equivariant convolutions described above are implemented using ordinary convo-
lutions, little extra computational effort required to use them compared to ordinary convolu-
tions: during training, there is just an additional step of computing the basis expansion defining
the equivariant convolution kernels (and backpropagating through it). When it is time to test
the network, this step can be avoided by computing the basis expansion once and only saving
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the resulting convolution kernels, so that it is completely equivalent in terms of computational
effort to using an ordinary CNN.

3.2. Equivariant nonlinearities

Although pointwise nonlinearities are translationally equivariant, some more care is needed
when designing nonlinearities that satisfy the equivariance condition in equation (5) with our
choices of groups. Examining the form of the induced representations in our setting, as given
in equation (6), it is evident that for a pointwise nonlinearity φ : R → R to be equivariant (in
the sense that φ(ρX (g)[ f ]) = ρX (g)[φ( f )], with φ applied pointwise) φ must commute with
πX (R) for every R ∈ H: with g = (t, R) for t ∈ Rd, R ∈ H we have

φ(πX (R) f (g−1x)) = φ(ρX (g)[ f ])(x) = ρX (g)[φ( f )](x)

= πX (h)φ( f (g−1x)).

This can be ensured if πX is the regular representation of H, since in that case each πX (h) is a
permutation matrix, giving the following guideline:

Lemma 2. Suppose that G = Rd
� H with H a finite subgroup of O(d) and that φ : R → R

is a given function. If πX is the regular representation of H, then Φ : X →X is equivariant,
where Φ( f )(x) = φ( f (x)).

Another way to ensure that φ commutes with πX is by choosing the trivial representa-
tion. Although the trivial representation may not be very interesting by itself, this gives rise
to another form of nonlinearity called the norm nonlinearity. If πX is a unitary representation,
taking the pointwise norm satisfies an equivariance condition: with g = (t, R) for t ∈ Rd, R ∈ H

‖ρX (g)[ f ](x)‖ = ‖πX (R) f (g−1x) ) ‖ = ‖ f (g−1x)‖.

The right-hand side transforms according to the trivial representation, so by the above com-
ments we deduce that the nonlinearity f 
→ φ(‖ f ‖) satisfies an equivariance condition of the
same form. To obtain the norm nonlinearity, which maps features of a given type to fea-
tures of the same type, we then form the map Φ : X →X , f 
→ f · φ(‖ f ‖): with g = (t, R)
for t ∈ Rd, R ∈ H, we have

Φ(ρX (g)[ f ])(x) = πX (R) f (g−1x) · φ(‖ f (g−1x)‖)

= πX (R)
(

f (g−1x) · φ(‖ f (g−1x)‖)
)

= πX (R)
(

f · φ(‖ f ‖)
)

(g−1x)

= ρX (g)[Φ( f )](x),

where we used that φ(‖ f (g−1x)‖) is a scalar. This shows that the norm nonlinearity Φ is indeed
equivariant:

Lemma 3. Suppose that πX is a unitary representation of H, and that φ : R → R is a given
function. Then the norm nonlinearityΦ : X →X with Φ( f )[x] = f(x)φ(‖ f(x)‖) is equivariant.

4. Reconstruction methods motivated by variational regularisation

We consider the inverse problem of estimating an image u from noisy measurements y. We
will assume that knowledge of the measurement process is available in the form of the forward
operator A, which maps an image to ideal, noiseless measurements, and generally there were
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Algorithm 1. Proximal gradient method.

inputs: measurements y, initial estimate u0

u ← u0

for i ← 1, . . . , it do
u ← proxτ iJ(u − τ i∇Ey(u))

end for
return u

will be a reasonable idea of the process by which they are corrupted to give rise to the noisy
measurements y. A tried and tested approach to solving inverse problems is the variational
regularisation approach [23, 29]. In this approach, images are recovered from measurements
by minimising a trade-off between the data fit and a penalty function encoding prior knowledge:

û = arg min
u

Ey(u) + J(u), (9)

with Ey a data discrepancy functional penalising mismatch of the estimated image and the
measurements and J the penalty function. Usually Ey will take the form Ey(u) = d(A(u), y),
where d is a measure of divergence chosen based on our knowledge of the noise process.

4.1. Equivariance in splitting methods

Generally, problem (9) may be difficult to solve, and a lot of research has been done on methods
to solve problems such as these. Iterative methods to solve it are often structured as split-
ting methods: the objective function is split into terms, and easier subproblems associated
with each of these terms are solved in an alternating fashion to yield a solution to problem
(9) in the limit. A prototypical example of this is the proximal gradient method (also known
as forward-backward splitting) [30, 31], which has become a standard tool for solving linear
inverse problems, particularly in the form of the FISTA algorithm [32]. In its basic form, the
proximal gradient method performs the procedure described in algorithm 1.

Recall here that the proximal operator [33–35] proxJ is defined as follows:

Definition 2. Suppose thatX is a Hilbert space and that J : X → R ∪ {+∞} is a lower semi-
continuous convex proper functional. The proximal operator proxJ : X →X is then defined as

proxJ(u) = arg min
u′∈X

1
2
‖u − u′‖2 + J(u′). (10)

Although this definition of proximal operators assumes that the functional J is convex, this
assumption is more stringent than is necessary to ensure that an operator defined by equation
(10) is well-defined and single-valued. One can point for example to the classes of μ-semi-
convex functionals (i.e. the set of J, such that u 
→ J(u) + μ

2 ‖u‖2 is convex) on X for 0 < μ <
1, which include nonconvex functionals. In what follows, we will allow for such more general
functionals by just asking that the proximal operator is well-defined and single-valued.

It is often reasonable to ask that the proximal operators proxτJ satisfy an equivariance
property; if the corresponding regularisation functional J is invariant to a group symmetry,
the proximal operator will be equivariant:

Proposition 2. Suppose that X is a Hilbert space and ρ is a unitary representation of a
group G on X . If a functional J : X → R ∪ {+∞} is invariant, i.e. J(ρ(g)f ) = J( f ), and has
a well-defined single-valued proximal operator proxJ : X →X , then proxJ is equivariant, in
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the sense that

proxJ(ρ(g) f ) = ρ(g)proxJ( f )

for all f ∈ X and g ∈ G.

Proof. We have the following chain of equalities:

proxJ(ρ(g) f ) = arg min
h

1
2
‖ρ(g) f − h‖2 + J(h)

(a)
= arg min

h

1
2
‖ρ(g)( f − ρ(g−1)h)‖2 + J(ρ(g−1)h)

(b)
= arg min

h

1
2
‖ f − ρ(g−1)h‖2 + J(ρ(g−1)h)

(c)
= ρ(g)

[
arg min

h

1
2
‖ f − h‖2 + J(h)

]
= ρ(g)proxJ( f ).

The three marked steps are justified as follows:

(a) J is assumed to be invariant w.r.t. ρ,
(b) The representation ρ is assumed to be unitary,
(c) ρ(g) is invertible, and under the substitution h ← ρ(g)h, the minimiser transforms

accordingly.

�

Example 2. As a prominent example of a regularisation functional satisfying the conditions
of proposition 2, consider the total variation functional [36] on L2(Rd)

TV(u) = sup
φ∈C∞

c (Rd ;Rd),‖φ‖∞�1

∫
Rd

u divφ,

with the group G = SE(d) and the scalar field representation ρ(r)[ f ](x) = f (r−1x). Since the
Lebesgue measure is invariant to G and the set of vector fields {φ ∈ C∞

c (Rd; Rd)|‖φ‖∞ �
1} is closed under G, TV is invariant w.r.t. ρ. As a result of this, proposition 2 tells us that
proxτTV is equivariant w.r.t. ρ for any τ � 0. Note that TV is not unique in satisfying these
conditions; by a similar argument it can be shown, for example, that the higher order total
generalised variation functionals [37] share the same invariance property (and hence also that
their proximal operators are equivariant).

Remark 1. The above example, and all other examples that we consider in this work, are
concerned with the case where the image to be recovered is a scalar field. Note, however, that
proposition 2 is not limited to this type of field and that there are applications where it is natural
to use more complicated representations ρ. A notable example is diffusion tensor MRI [38] in
which case the image to be estimated is a diffusion tensor field and ρ should be chosen as the
appropriate tensor representation.

4.1.1. Equivariance of the reconstruction operator. It is worth thinking about whether it is
sensible to ask that the overall reconstruction method is equivariant, and how this should be
interpreted. Thinking of the reconstruction operator as a map from measurements y to images
û, it is hard to make sense of the statement that it is equivariant, since the measurement space

11
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Figure 2. An example demonstrating the non-equivariance of a general variational regu-
larisation approach to image reconstruction, even when the corresponding regularisation
functional J (as in problem (9)) is invariant. Here, A represents the application of an
inpainting mask, R is an operator rotating the image by 20◦ and Φ is the solution map to
problem (9) with Ey(u) = ‖Au − y‖2 and J(u) = τTV(u).

Algorithm 2. Learned proximal gradient method.

inputs: measurements y, initial estimate u0

u ← u0, s ← 0
for i ← 1, . . . , it do

(u, s) ← p̂roxi(u, s,∇Ey(u))
end for
return Φ(y) := u

generally does not share the symmetries of the image space (in the case where measurements
may be incomplete). If we think instead of the reconstruction method as mapping a true image
u to an estimated image û through (noiseless) measurements y = A(u), we might ask that a
symmetry transformation of u should correspond to the same symmetry transformation of û.
In the case of reconstruction by a variational regularisation method as in problem (9), this is
too much to ask for even if the regularisation functional is invariant, since information in the
(incomplete) measurements can appear or disappear under symmetry transformations of the
true image. An example of this phenomenon when solving an inpainting problem is shown in
figure 2.

4.2. Learned proximal gradient descent

A natural way to use knowledge of the forward model in a neural network approach to image
reconstruction is in the form of unrolled iterative methods [5, 22]. Starting from an iterative
method to solve problem (9), the method is truncated to a fixed number of iterations and some
of the steps in the truncated algorithm are replaced by learnable parts. As noted in the previous
section, the proximal gradient method in algorithm 1 can be applied to a variational regularisa-
tion problem such as problem (9). Motivated by this and the unrolled iterative method approach,
we can study learned proximal gradient descent as in algorithm 2 (where the variable s can be
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Figure 3. A schematic illustration of a single iteration of the learned proximal gradient
method, algorithm 2, for a CT reconstruction problem. The choice of Ey is described in
section 5.1.1. Knowledge of the forward model is incorporated into the reconstruction
through ∇Ey, which is not an equivariant operator in general. Motivated by proposition
2, we know that p̂roxi is naturally modelled as an equivariant operator.

used as a memory state as is common in accelerated versions of the proximal gradient method
[32]):

Here p̂roxi are neural networks, the architectures of which are chosen to model proximal
operators. In this work, we choose p̂roxi to be defined as

p̂roxi = Kproject,i ◦ (id + φ ◦ Kintermediate,i) ◦ Klift,i, (11)

where each of the Kproject,i, Kintermediate,i and Klift,i are learnable affine operators (given by a
convolution operation followed by adding a bias term) and φ is an appropriate nonlinear
function. We can appeal to proposition 2 and model p̂roxi as translationally equivariant (we
will call the corresponding reconstruction method the ordinary method in what follows) or
as roto-translationally equivariant (we will call the corresponding reconstruction method the
equivariant method in what follows). Figure 3 gives a schematic illustration of the inputs and
outputs of the learned proximal operators.

Recall that we consider groups of the form G = Rd
� H for subgroups H of O(d) in this

work. Since we apply the learned equivariant method to reconstruct scalar-valued images, the
input and output types of each p̂roxi should correspond to features carrying the trivial represen-
tation of H. For the equivariant method, Klift,i are equivariant convolutions from a small number
(2+ the number of channels used for the memory state) of input channels with the trivial rep-
resentation of H to a larger number of intermediate channels with the regular representation
of H, if H is a finite group, or various irreducible representations of H, if H is a continuous
group. Kintermediate,i are chosen as equivariant convolutions mapping the output channels of Klift,i

to a set of channels of the same type. Finally, Kproject,i are chosen as equivariant convolutions
that map the output channels of Kintermediate,i to a small number (1+ the number of channels
used for the memory states) of output channels with the trivial representation of H. For the
implementation of the equivariant convolutions, recall the procedure described at the end of
section 3.1.

For the ordinary method, Klift,i are ordinary convolutions mapping a small number (equal to
that of the equivariant method) of input channels to a larger number of intermediate channels,
Kintermediate,i are ordinary convolutions mapping the output channels of Klift,i to a set of channels
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of the same type, and Kproject,i are ordinary convolutions mapping the many output channels of
Kintermediate,i to a small number (equal to that of the equivariant method) of output channels.

Since the implementations of the equivariant convolutions are ultimately based on ordinary
convolutions, a natural comparison can be made between the equivariant and ordinary method
by matching the widths of the underlying ordinary convolutions. When the methods are com-
pared in this way, they should take comparable computational effort to use and the ordinary
method is a superset of the equivariant method in the sense that the parameters of the ordinary
method can be chosen to reproduce the action of the equivariant method.

Remark 2. Both in the case of algorithms 1 and 2, we require access to the gradient ∇Ey,
where Ey is a data discrepancy functional. In our case, E always takes the form Ey(u) =
d(A(u), y) where A is the forward operator and d is a measure of divergence. As a result of this
Ey can be differentiated by the chain rule as long as we have access to the gradient of d and can
compute vector-Jacobian products of A. If the forward operator A is linear, its vector-Jacobian
products are just given by the action of the adjoint of A.

5. Experiments

In this section, we demonstrate that roto-translationally equivariant operations can be incorpo-
rated into a learned iterative reconstruction method such as algorithm 2 to obtain higher quality
reconstructions than those obtained using comparable reconstruction methods that only use
translationally equivariant operations. We consider two different inverse problems: a subsam-
pled MRI problem and a low-dose CT problem. The code that was used to produce the experi-
mental results shown is freely available at https://github.com/fsherry/equivariant_image_recon
[54].

5.1. Datasets

5.1.1. LIDC-IDRI dataset. We use a selection of chest CT images of size 512 × 512 from the
LIDC-IDRI dataset [39, 40] for our CT experiments. We use a combination of L1 norm and the
TV functional as a simple way to screen out low-quality images. The details of this procedure
can be found in the code repository associated with this work. The set is split into 5000 images
that can be used for training, 200 images that can be used for validation and 1000 images that
can be used for testing. For the experiments using this dataset, we use the ASTRA toolbox
[41–43] to simulate a parallel beam ray transformR with 50 uniformly spaced views at angles
between 0 and π. We simulate the measurements y as post-log data in a low-dose setting:

y = − 1
μ

log

(
max

{
n

Nin
, η

})
, where n ∼ Pois(Nin exp(−μR(u))).

Here Nin = 10 000 is the average number of photons per detector pixel (without attenuation),μ
is a base attenuation coefficient connecting the volume geometry and attenuation strength, and
η is a small constant to ensure that the argument of the logarithm is strictly positive, chosen as
η = 10−8 in our experiments. Figure 4 shows some examples of the ground truth images and fil-
tered backprojection (FBP) reconstructions from the corresponding simulated measurements.
In these experiments, we will define the data discrepancy functional Ey as

Ey(u) =
1
2
‖Ru − y‖2

2.
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Figure 4. Four samples of the images that were used to train the reconstruction operators
in the CT experiments, and the results of applying FBP to the corresponding simu-
lated sinograms. The images are clipped between upper and lower attenuation coefficient
limits of −1024 HU and 1023 HU.

Figure 5. The sampling mask S used in the MRI experiments, sampling 20.3% of k-
space, and two samples of the images that were used to train the reconstruction operators
in the MRI experiments, and the zero-filling reconstructions from the corresponding
simulated k-space measurements.

5.1.2. FastMRI. We use a selection of axial T1-weighted brain images of size 320 × 320 from
the FastMRI dataset [44, 45] for our MRI experiments. As in section 5.1.1, we screen the
images to remove as many low-quality images as possible. The set is split into 5000 images
that can be used for training, 200 images that can be used for validation and 1000 images
that can be used for testing. For the experiments using this dataset, we simulate the measure-
ments using a discrete Fourier transform F and a variable density Cartesian line sampling
pattern S (simulated using the software package associated with the work in [46] and shown in
figure 5):

y = SFu + ε,

where ε is complex-valued white Gaussian noise. In this setting, a complex-valued image is
modelled as a real image with two channels, one for the real part and the other for the imaginary
part. The corresponding data discrepancy functional (Ey in equation (9)) will be defined as

Ey(u) =
1
2
‖SFu − y‖2

2.
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Figure 6. The reconstruction quality, as measured on a validation set, of learned proxi-
mal gradient methods trained on the CT reconstruction problem with varying orders of
the group H. Note that when H is chosen to represent on-grid rotations (i.e. m = 2 or
m = 4), the performance is significantly better than for any of the other choices of H.

5.2. Experimental setup

5.2.1. Learning framework. Although it is also possible to learn the parameters of the recon-
struction methods in algorithm 2 in an unsupervised learning setting, all experiments that we
consider in this work can be classified as supervised learning experiments: given a finite train-
ing set {(ui, yi)}N

i=1 of ground truth images ui and corresponding noisy measurements yi, we
choose the parameters of Φ in algorithm 2 by solving the empirical risk minimisation problem

min
Φ

1
N

N∑
i=1

‖ui − Φ(yi)‖2
2.

5.2.2. Architectures and initialisations of the reconstruction networks. We use the recon-
struction networks defined in section 4.2, referring to the architecture described there with
roto-translationally equivariant components as the equivariant method and referring to the
architecture with translationally equivariant components as the ordinary method. To ensure
fair comparisons between the various methods that we compare, we fix as many as possible
of the aspects of the methods that are orthogonal to the point investigated in the experiments.
To this end, every learned proximal gradient method has a depth of it = 8 iterations. Both
for the CT and MRI experiment, the images being recovered are two-dimensional, so we use
equivariant convolutions with respect to groups of the form R2

� Zm. Since the equivariant
convolutions are implemented using ordinary convolutions, it is natural and straightforward to
compare methods with the same width. The width of each network is the same (feature vectors
that transform according to the regular representation take up |H| ‘ordinary’ channels, and we
fix the size of the product |H| · nchannels = 96 where nchannels is the number of such feature vec-
tors in the intermediate part of p̂roxi in equation (11)). All convolution filters used are of size
3 × 3. We choose the initial reconstruction u0 = 0 and use a memory variable s of five scalar
channels wide in the learned proximal gradient method (algorithm 2).

Furthermore we ensure that the initialisation of both types of methods are comparable.
Referring back to equation (11), we choose to initialise Kintermediate,i equal to zero and let Kproject,i

and Klift,i be randomly initialised using the He initialisation method [47], as implemented in
PyTorch [48] for ordinary convolutions and generalised to equivariant convolutions in [26] and
implemented in the software package https://github.com/QUVA-Lab/e2cnn [11]. For the prac-
tical implementation of the exact methods studied, the reader is advised to consult the code at
https://github.com/fsherry/equivariant_image_recon [54].
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5.2.3. Hyperparameters of the equivariant methods. In addition to the usual parameters of a
CNN, the learned equivariant reconstruction methods have additional parameters related to the
choice of the symmetry group its representations to use. In this work, we have chosen to work
with groups of the form R2

� Zm, so a choice needs to be made which m ∈ N to consider.
In figure 6, we see the result of training and validating learned equivariant reconstruction

methods on the CT reconstruction problem, with various orders m of the group H = Zm. Each
of the learned methods is trained on the same training set consisting of 100 images. The violin
plots used give kernel density estimates of the distributions of the performance measures; for
each one, we have omitted the top and bottom 5% of values so as not to be misled by out-
liers. Evidently, in this case, the groups of on-grid rotations significantly outperform the other
choices, with m = 4 giving the best performance. Based on this result, all further experiments
with the equivariant methods will use the group H = Z4.

5.2.4. Training details. For both the equivariant and ordinary reconstruction methods, we
train the methods using the Adam optimisation algorithm [49] with learning rate 10−4, β1 =
0.9, β2 = 0.999 and ε = 10−8. We use minibatches of size 1 and perform a total of 105 itera-
tions of the Adam algorithm to train each method, so that we perform the same total number
of iterations for each training set, regardless of its size. Since we have chosen to use the finite
group approach, with intermediate fields transforming according to their regular representa-
tion, we can use a pointwise nonlinearity for both the equivariant and ordinary reconstruction
methods. In all experiments, we use the leaky ReLU function as the nonlinearity (φ in equation
(11)), applied pointwise:

φ(x) =

{
x if x > 0,

0.01x else.

Each training run is performed on a computer with an Intel Xeon Gold 6140 CPU and an
NVIDIA Tesla P100 GPU. Training the equivariant methods requires slightly more computa-
tional effort than the ordinary methods: to begin with, given the specification of the architecture,
bases need to be computed for the equivariant convolution kernels (this takes negligible effort
compared to the effort expended in training). Besides this, each training iteration requires the
computation of the convolutional filter from its parameters and the basis functions and the back-
propagation through this basis expansion. To give an example of the extra computational effort
required, we have timed 100 training iterations for comparable equivariant and ordinary meth-
ods for the MRI reconstruction problem: this took 35.5 s for the ordinary method and 41.9 s
for the equivariant method, an increase of 18%. These times correspond to a total training time
of 9.9 h and 11.6 h for the equivariant and ordinary methods respectively. Note that at test time,
however, the ordinary and equivariant methods can be computed with the same effort.

5.2.5. Performance measures. We evaluate the performance of the learned reconstruction
methods using two performance measures:

• The peak signal to noise ratio (PSNR), defined for a ground truth signal u ∈ Rn and
reconstruction û ∈ Rn as

PSNR(û, u) = 10 log10

⎛⎝n max
1�i�n

|ui|2

‖u − û‖2

⎞⎠ .
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Figure 7. A comparison of the performance of equivariant and ordinary learned proxi-
mal gradient methods trained on training sets of various sizes for the CT reconstruction
problem. The methods are tested on images that have not been seen during training time,
both in the same orientations as were observed during training (‘upright test images’)
and rotated at random angles (‘rotated test images’). The performance is evaluated on
the lung regions only.

• The structural similarity index measure (SSIM) [50], defined initially on small windows
of images, u, û ∈ Rw×w (with w odd) by

SSIM(û, u) =
2¯̂uū + c1

¯̂u2 + ū2 + c1
· 2sû,u + c2

s2
û + s2

u + c2

for small nonnegative constants c1, c2. In this formula, we have used the mean and variance
statistics defined by

u =
1
w2

∑
1�i, j�w

ui, j, sû,u =
1
w2

∑
1�i, j�w

(ûi, j − ¯̂u)(ui, j − ū), su = su,u.

To obtain a performance measure for larger images u, û ∈ Rn1×n2 with n1, n2 � w, we
compute the SSIM on each of their subwindows and average:

SSIM(û, u) =
1

(n1 + 1 − w)(n2 + 1 − w)

∑
1�i�n1+1−w
1� j�n2+1−w

SSIM([û]i, j, [u]i, j),

where [u]i, j is the window (uk,l)i�k<i+w, j�l< j+w. We use the implementation included in
scikit-image [51], with the corresponding default parameter choices.

Both the PSNR and the SSIM have the property that higher values correspond to better
reconstructions. Whereas the PSNR can immediately be applied to arbitrarily shaped signals
(since the various locations in the signals do not interact), the SSIM in principle requires the
input images to be regularly sampled to make sense of the subwindow statistics. One way in
which the SSIM can be reasonably computed on segmented data is as follows: note that the
subwindow SSIMs that are needed in the computation of the full SSIM define an image, the
so-called SSIM map. If the input images are first padded on each side by �w/2� pixels (for
example by reflection padding, as is done in the scikit-image implementation), the SSIM map
computed from them will be of the same size as the original input images and will be aligned
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Figure 8. A random selection of test images corresponding to the plots shown in figure 7,
with a training set of size N = 50. On each reconstruction, the top number is its SSIM and
the bottom number is its PSNR w.r.t. the ground truth, with both performance measures
computed on the lung regions only. The images are clipped between upper and lower
attenuation coefficient limits of −1024 HU and 1023 HU.

Figure 9. A comparison of the performance of equivariant and ordinary learned proxi-
mal gradient methods trained on training sets of various sizes for the MRI reconstruction
problem. The methods are tested on images that have not been seen during training
time and that have been rotated at random angles. The performance is evaluated on the
foreground regions only.

with them. The ordinary SSIM is computed by taking the average of such an SSIM map, so
given a segmentation mask we can compute a segmented SSIM by instead taking the average
of the values of the SSIM map over points that are inside the mask.

To apply either of the performance measures to the MRI images, which are complex-valued,
we compute them on the absolute value images.

19



Inverse Problems 37 (2021) 085006 E Celledoni et al

5.3. CT experiment: varying the size of the training set

In this experiment, we study the effect of varying the size of the training set on the perfor-
mance of the equivariant and ordinary methods. We consider a range of training set sizes, as
shown in figure 7, and test the learned reconstruction methods on images that were not seen
during training time, both in the same orientation and randomly rotated images. In medical
applications, one tends to be particularly interested in the lung regions of the chest CT images.
Although the methods have not been trained with this specifically in mind, in this section we
will consider their performance on the lung regions. For this purpose, we use an automatic
lung CT segmentation tool from [52] to select the regions of interest. As can be seen in figure
8, the equivariant method does a better job at reconstructing the lung regions than the ordi-
nary method when trained on smaller training sets, but does slightly worse with larger training
sets. This can be explained by the fact that the equivariant method is subsumed by the ordi-
nary method (recall that the equivariant method can be replicated by appropriately setting the
weights of the ordinary method, but the converse does not hold). The violin plots displayed
have the same interpretation as those shown in figure 6 and described in section 5.2.3. We see
a slight deviation from a monotonic relationship between the training set size and reconstruc-
tion quality that would usually be expected. Small random variations in the test performance
can be explained by various nondeterministic aspects of the training procedure: we use random
initialisations of the network weights, the learning problem is nonconvex and there is random-
ness in how the examples are sampled during training. From this comparison, we see that the
equivariant method is able to better take advantage of smaller training sets than the ordinary
method. Furthermore, we see that the performance of the equivariant method does not suffer
much when testing on images in unseen orientations, whereas the performance of the ordinary
method drops significantly when testing on rotated images. Figure 8 shows some examples of
test reconstructions made with the methods learned on a training set of size N = 50. In these
reconstructions, it can be seen that the equivariant method does better at removing streaking
artefacts than the ordinary method.

5.4. MRI experiment: varying the size of the training set

This experiment is similar to the experiment in section 5.3, but concerns the MRI reconstruc-
tion problem. A notable difference with the CT reconstruction problem is that, as a result of the
Cartesian line sampling pattern, the forward operator is now less compatible with the rotational
symmetry. Regardless of this, we have seen in section 4 that it is still sensible in this context to
use equivariant neural networks in a method motivated by a splitting optimisation method. As
in section 5.3, we evaluate the performance of the learned methods on regions of interest: in this
case we use the foreground of the images, which we isolate by thresholding the ground truth
images, followed by taking the convex hull of the result. The performance differential between
the equivariant and ordinary methods is more subtle than in the CT reconstruction problems.
An explanation for this can be found in the fact that the MRI reconstruction problem is, in a
certain sense, easier than the CT reconstruction problem: the nonzero singular values of the
MRI forward operator are constant, while those of the CT forward operator decay, complicat-
ing the inversion. Remarkably, it is observed that both methods perform better on the rotated
images than they do on the upright images. This is an artefact of how the rotated images are cre-
ated: rotated images are generated from the upright images by performing a rotation operation
which necessarily includes an interpolation step. As a result of this, some of the high frequency
details disappear after rotating, resulting in an easier reconstruction problem. Appendix A goes
into more detail about this effect. In figure 9, we see that the equivariant method can again take
better advantage of smaller training sets and is more robust to images dissimilar to those seen
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Figure 10. A random selection of test images corresponding to the plots shown in figure
9, with a training set of size N = 100. On each reconstruction, the top number is its
SSIM and the bottom number is its PSNR w.r.t. the ground truth, with both performance
measures computed on the foreground regions only.

in training. Figure 10 shows examples of reconstructions made with the methods learned on a
training set of size N = 100.

6. Conclusions and discussion

In this work, we have shown that equivariant neural networks can be naturally incorporated into
learnable reconstruction methods for inverse problems. Doing so requires little extra effort and
results in higher quality reconstructions when compared to similar methods that use ordinary
CNNs. The main difference of this approach compared to existing approaches is that we model
proximal operators in a learned reconstruction method as roto-translationally equivariant rather
than just translationally equivariant, as is usually the case. Building the extra symmetries into
the learned reconstruction method has the effect of lowering the method’s sample complexity.
Using roto-translationally equivariant neural networks as opposed to ordinary CNNs results in
better performance when trained on smaller training sets and more robustness to rotations.

Let us now discuss some of the limitations of the proposed approach and potential
improvements to be considered in future work.

As we saw in sections 5.3 and 5.4, the equivariant method outperforms the ordinary method
for small training sets, but is slightly outperformed by the ordinary method for large training
sets. This is a result of the equivariant method being a subset of the ordinary method. The
equivariant method can be made more expressive by using a larger number of intermediate
channels, but this comes at the expense of increased computational cost.

In section 5.2.3, we saw that that the learned methods perform best when the group H is
chosen to be a group of on-grid rotations. In theory, one would expect better performance
with a larger number of rotations, but in practice there is the issue of how the equivariant
kernels are discretised. Indeed, when solving the constraint for equivariance in equation (8),
the allowed kernels turn out to be circular harmonics multiplied by an arbitrary radial profile,
and in practice we discretise these functions on 3 × 3 filters. An opportunity for future work
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on the use of equivariant neural networks can be found in how the combination of group and
discretisation should be optimised.

All of the experiments shown in this work have dealt with two-dimensional images, but the
methods described here can be applied equally well to three-dimensional images, as long as
the two-dimensional equivariant convolutions are replaced by their three-dimensional coun-
terparts. The representation theory of SO(3) is more complicated than that of SO(2), but it is
similarly possible to design roto-translationally equivariant convolutions in three dimensions
[27]. One potential application is mentioned in remark 1: in diffusion tensor MRI, the domain
is three-dimensional, with the additional challenge that the image that is to be recovered is a
tensor field rather than a scalar field.

In the experiments that we demonstrated in this work, we focused on a single type of learned
reconstruction operator, the learned proximal gradient method. In fact, the framework that we
describe is not limited to this form of reconstruction algorithm. As an example of another
type of learned reconstruction operator, consider the learned primal-dual method of [53]. A
small corollary to proposition 2 is that, when J is invariant and the Fenchel conjugate J∗ is
well-defined, proxJ∗ will be equivariant in the same way that proxJ is. As a result, assuming
reasonable invariance properties of a data discrepancy term, a learned primal-dual method can
be considered where both the primal and dual proximal operators are modelled as appropriate
equivariant neural networks.
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Appendix A. The blurring effect of image rotations

In section 5.4, we made the remarkable observation that the learned reconstruction methods
perform better for the MRI problem on rotated images than on upright images similar to those
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Figure A1. A comparison of the performance of the learned reconstruction methods on
two types of upright images for the MRI problem: the original images (‘unaltered’) and
otherwise identical images that have been rotated and rotated back (‘rotated’).

Figure A2. A comparison of the performance of the learned reconstruction methods
on two types of upright images for the CT problem: the original images and otherwise
identical images that have been rotated and rotated back.

on which they were trained. It was mentioned there that this is an artefact of the way in which
rotated images are created. As a simple test of this explanation, consider the comparison of the
performance on the unaltered upright images and the performance on upright images that have
been randomly rotated and then rotated back to be upright. If the hypothesised explanation for
the difference in performance is correct, we would expect the methods to perform better on the
images that have been rotated and rotated back than on the unaltered images. Figure A1 shows
the result of doing this comparison, confirming that the MRI problem is significantly easier
to solve for the learned reconstruction methods after the images have undergone the blurring
effect of the rotation operation. Figure A2 shows the same comparison repeated for the CT
problem. In this case the effect is still visible, but it is considerably weaker, which explains
why it was not observed in section 5.3.
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